

AQA Chemistry A-level

3.3.9: Carboxylic Acids and Esters Detailed Notes

This work by PMT Education is licensed under CC BY-NC-ND 4.0

3.3.9.1 - Carboxylic Acids and Esters

Carboxylic Acids

These organic compounds are recognised by the **functional group -COOH** containing a carbonyl group (C=O) and an -OH acid group. They are produced from the oxidation of 1° alcohols under **reflux**.

Carboxylic acids are **weak acids that slightly dissociate** when in solution, forming a H⁺ ion and a **carboxylate ion**, RCOO-.

They react as acids with carbonates to produce a carboxylate salt, water and CO₂.

Small chain carboxylic acids are able to form hydrogen bonds with water molecules between the lone electron pair on an oxygen atom and a ∂ + hydrogen atom. This makes them soluble in water.

www.pmt.education

Example:

Esters

Carboxylic acids can **react with alcohols** in the presence of a **strong acid catalyst** to form **esters**. This reaction is **esterification** and is carried out under reflux.

A method for remembering the reaction is: 'remove the -OH from the acid and the hydrogen from the alcohol to make water. Then stick the acid and alcohol together'.

Esters are **sweet smelling compounds** used in food flavourings and perfumes. They have **low boiling points** and also make **good solvents** for other polar molecules.

Triglyceride Esters

Vegetable oils and fats are esters of naturally occuring **glycerol** (propane-1,2,3-triol). This alcohol undergoes esterification to form **triglyceride esters**.

Example:

Biodiesel is an ester produced from **vegetable oils and methanol** in the presence of a strong acid catalyst.

Hydrolysis

Ester hydrolysis is the **reverse reaction** to esterification, converting esters back into alcohols and carboxylic acids. This is done by **adding water** but can be carried out under **different conditions** to produce different products.

Acidic Conditions

This produces a simple reverse reaction back to an alcohol and a carboxylic acid.

Alkaline Conditions Image courtesy of Chemistry Libre Texts O O R R R R R R R R R R R R R R

The carboxylic acid produced reacts further with the base to form a salt.

The production of this salt is called **saponification**. Salts such as this are commonly used as **soaps** because they have **hydrophilic and hydrophobic** properties.

🕟 www.pmt.education

3.3.9.2 - Acylation

Carboxylic acids have **derivative molecules** where the -OH group is replaced by another group. There are three main derivatives:

Acid Anhydrides - Formed when water is removed from two carboxylic acids.

Acyl Chlorides - React violently due to the very polar -COCI group.

Amides - Reacts to form N-substituted amides.

▶ Image: Second Second

www.pmt.education

Reactions of Derivatives

These compounds react via **nucleophilic addition-elimination reactions**. In these reactions, the addition of a nucleophile leads to the elimination of a product under **aqueous conditions**.

Acyl chlorides can react with other compounds too:

- + Water = Carboxylic Acid
- + Alcohol = Ester
- + Ammonia = Amide
- + Amines = N-substituted Amide

Aspirin

This is an ester produced from salicylic acid and ethanoic anhydride.

Ethanoyl chloride can also be used to produce aspirin however it is not used in industry as it is **expensive** and produces **harmful HCI fumes** as part of the reaction. **Ethanoic anhydride** is much safer for industrial use.

